Complete composition tunability of InGaN nanowires using a combinatorial approach.

نویسندگان

  • Tevye Kuykendall
  • Philipp Ulrich
  • Shaul Aloni
  • Peidong Yang
چکیده

The III nitrides have been intensely studied in recent years because of their huge potential for everything from high-efficiency solid-state lighting and photovoltaics to high-power and temperature electronics. In particular, the InGaN ternary alloy is of interest for solid-state lighting and photovoltaics because of the ability to tune the direct bandgap of this material from the near-ultraviolet to the near-infrared region. In an effort to synthesize InGaN nitride, researchers have tried many growth techniques. Nonetheless, there remains considerable difficulty in making high-quality InGaN films and/or freestanding nanowires with tunability across the entire range of compositions. Here we report for the first time the growth of single-crystalline In(x)Ga(1-x)N nanowires across the entire compositional range from x=0 to 1; the nanowires were synthesized by low-temperature halide chemical vapour deposition and were shown to have tunable emission from the near-ultraviolet to the near-infrared region. We propose that the exceptional composition tunability is due to the low process temperature and the ability of the nanowire morphology to accommodate strain-relaxed growth, which suppresses the tendency toward phase separation that plagues the thin-film community.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Thermal Annealing in Ammonia on the Properties of InGaN Nanowires with Different Indium Concentrations

The utility of an annealing procedure in ammonia ambient is investigated for improving the optical characteristics of InxGa1−xN nanowires (0.07 ≤ x ≤ 0.42) grown on c-Al2O3 using a halide chemical vapor deposition method. Morphological studies using scanning electron microscopy confirm that the nanowire morphology is retained after annealing in ammonia at temperatures up to 800 °C. However, sig...

متن کامل

GaN and InGaN Nanowires on Si Substrates by Ga-Droplet Molecular Beam Epitaxy

Molecular beam epitaxy growth of GaN and InGaN nanowires is accomplished on Si (111) substrates using Ga-droplet nucleation. Typical diameters range from 25-80 nm and lengths can be varied by increasing the growth time; the growth rate is ~0.25 microns/hour. The nanowires have been characterized structurally and optically. Photoluminescence spectra show band-edge emission of GaN nanowires cente...

متن کامل

Vertically aligned InGaN nanowires with engineered axial In composition for highly efficient visible light emission.

We report on the fabrication of novel InGaN nanowires (NWs) with improved crystalline quality and high radiative efficiency for applications as nanoscale visible light emitters. Pristine InGaN NWs grown under a uniform In/Ga molar flow ratio (UIF) exhibited multi-peak white-like emission and a high density of dislocation-like defects. A phase separation and broad emission with non-uniform lumin...

متن کامل

Fabrication of vertical GaN/InGaN heterostructure nanowires using Ni-Au bi-metal catalysts

We have fabricated the vertically aligned coaxial or longitudinal heterostructure GaN/InGaN nanowires. The GaN nanowires are first vertically grown by vapor-liquid-solid mechanism using Au/Ni bi-metal catalysts. The GaN nanowires are single crystal grown in the [0001] direction, with a length and diameter of 1 to 10 μm and 100 nm, respectively. The vertical GaN/InGaN coaxial heterostructure nan...

متن کامل

Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties.

Three-dimensional hierarchical nanostructures were synthesized by the halide chemical vapor deposition of InGaN nanowires on Si wire arrays. Single phase InGaN nanowires grew vertically on the sidewalls of Si wires and acted as a high surface area photoanode for solar water splitting. Electrochemical measurements showed that the photocurrent density with hierarchical Si/InGaN nanowire arrays in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature materials

دوره 6 12  شماره 

صفحات  -

تاریخ انتشار 2007